

OpenEdge Database Performance Tuning

P a g e | 2

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Contents
Lab 1 Performance Monitoring ... 10

Part (1a) Promon and the Gather Script ... 10

Part (1b) prostack (Unix) and Progetstack ... 16

Part (1c) Operating System Tools ... 21

Part (1d) db request statement cache .. 27

Lab (2) New performance features ... 35

Part (2a) Demonstration of -lruskips (-lru2skips works the same) .. 35

Part (2b) Demonstration of Things that can effect LRU ... 38

Part (2c) Demonstration of -B2 .. 41

Lab 3 Demonstration of -Nmsg, -prefetchFactor, -prefetchDelay, -prefetchNumRecs. ... 45

Lab 4 Use of the proutil increaseto feature. .. 49

Part (4a) Demonstration of increaseto -L ... 49

Part (4b) Demonstration of increaseto -B ... 51

Caveat to increaseto due to current logged in users. ... 54

Part (4c) Demonstration of increaseto -B2 (Disabling LRU2 Policy) .. 56

P a g e | 3

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Purpose

This document accompanies the Progress Exchange 2013 Performance Tuning Workshop. It provides step-by-step

instructions for the hands-on portions of the Workshop.

Disclaimer

This document is not a manual. It provides examples of OpenEdge features and methods for monitoring database

performance. Complete documentation for using the OpenEdge can be found online here

http://communities.progress.com/pcom/docs/DOC-16074. Progress Software cannot be held responsible for the

content of this document nor for any damage that may occur to your environment.

Overview
In this workshop, you provide hands-on experience using common tools to analyze performance with an OpenEdge database. This

workshop will also provide demonstrations and ways to test using some new performance tuning options for the OpenEdge

database.

http://communities.progress.com/pcom/docs/DOC-16074

P a g e | 4

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

LAB 0 Setting up Putty for Connection to the Progress Cloud machines.

Objective

Configure putty to connect to the Amazon cloud machines using an authentication key file.

Duration

5 Minutes

Goals

Configure putty to connect to the Amazon cloud machines using an authentication key file.

Instructions

1) A putty.ppk file should have been sent to you by email.

2) Save this file to a directory on disk that you can easily find afterwards.

3) Open putty.exe

4) The initial configuration screen for putty should look like this:

P a g e | 5

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

5) Enter the hostname or IP address for the Amazon Cloud system in the Host (or IP address) field

6) After entering the host you can define a saved session name

P a g e | 6

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

7) Then expand the SSH option in the left pane by clicking on the expand toggle

8) The Auth portion of the SSH configuration will now be visible

P a g e | 7

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

9) Click on the Auth option

10) Click on the browse button and locate the putty.ppk that was saved in step 2 then click open

11) The private key file for authentication should now be selected

P a g e | 8

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

12) To save this configuration you must now scroll up in the left pane of the putty configuration window until

Session is visible then click on Session then click on the save button

P a g e | 9

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

13) This will store the configuration under the name chosen in step 6

14) Throughout the rest of this workshop whenever you are asked to start a new putty session open putty, highlight

the named session you saved, then click on open

15) For all putty sessions the root login will be used. No password is necessary.

P a g e | 10

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Lab 1 Performance Monitoring

Objectives

In parts a, b, and c of this lab you will learn how to monitor the OpenEdge database with various tools.

 You will learn to monitor the database with the promon gather script:

 You will learn what the gather script does s and does not do for the database administrator?

 Learn common operating system utilities and their role in identifying performance problems.

Part (1a) Promon and the Gather Script

Duration

20 minutes

Goals

 In Lab1a you will learn how to monitor the progress database with promon and the gather script which

comprehensively collects data to analyze performance and help detect problems.

Instructions

Open two or more shell sessions for this exercise.

1) Open three putty sessions and type the following commands in both sessions:

 ./proenv

 cd lab1/lab1a

P a g e | 11

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

2) In the first session type this command to start the database with some general parameters:

startdb.sh -pf general.pf

3) in the second session type these command to run Promon against the database and look at the

database activity:

promon.sh
Enter R&D (R&D. Advanced options)
Enter 2 (2. Activity Displays ...)
Enter 1 (1. Summary)
Enter Z to zero out the counters

9) In the first session type this command to create some activity against the database:

P a g e | 12

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

multiuser.sh -p busywork-no-pause1.p

10) When the program finishes it will say "Press space bar to continue." which will finish the program.

11) At this point go to the second putty session which is running promon

12) press U for update

13) In the third putty session and issue the following commands:

multiuser.sh -p busywork-with-pause.p

14) press space bar to begin the first phase of work in the third putty session

P a g e | 13

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

15) go back to promon and press U for update

16) Disconnect both client sessions

press space bar in each of the client sessions until you return to the proenv prompt

In some cases because the client is in a tight loop it may be necessary to kill the session and

start a new client session.

17) Connect both client sessions again and run busywork-no-pause1.p

multiuser.sh -p busywork-no-pause1.p

18) Use the same promon screen to monitor the data

Press u several times note how quickly the information is changing which makes analysis more

difficult.

Note how quickly the information is changing which makes analysis more difficult.

When taken in isolation, promon can easily see everything any one process does and that is clearly visible to

you the DBA.

19) Press X to exit the promon session

P a g e | 14

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

When more than one client is performing work it can cloud the stream of data and make it more challenging

to identify what is happening at a minute, granular level.

20) Use the gather.sh (gather.sh on Unix) script against the database. Issue the following command in

the putty session where promon was running:

gather.sh perf

The perf option is available for the Unix version of the gather script.

This limits the gather to collect performance monitoring data only.

The script for this workshop has been customized to embed a specific database name within the script.

Issue this command from the proenv prompt:

21) Hit the Enter key at least once after the gather script has been started as it will typically not signify

it is completed.

22) When the command has returned to the proenv prompt issue the following command:

 ls -ltr

You should see a directory which will be the date and timestamp when the gather script command was

run similar to what is pictured here:

23) Use the cd to switch directories into the directory created by the gather script

24) Issue the ls command to view the list of files created by the gather script.

The screen shot below is just an example of the files that gather creates.

P a g e | 15

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

25) Close all putty sessions.

Without the perf option the gather script on Unix will collect a list of Progress processes running on the

system and send non-destructive signals to each process to get stack trace information.

Why is gather so long? Because it is better to throw the kitchen sink at it than hunt and peck for

answers when an emergency is occurring. All the files gather created in one simple script instead of

starting them manually.

For targeted situations when no critical time crunch is present, hunting and pecking in promon might

be better however for emergencies, the gather script collects most of what is needed for problem

analysis by Technical Support and Development or general performance tuning investigations.

P a g e | 16

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (1b) prostack (Unix) and Progetstack

(Windows progetstack is not part of this workshop demonstration)

Duration

5 minutes

Goals

 In Lab1b you will learn how to trigger OpenEdge executables to create a stack trace which can help in the

isolation of performance problems and process hangs.

Instructions

Prostack and progetstack are Progress tools introduced in 10.1C and written to connect to a running

process and trigger the process, if it is responsive, to drop a stack trace including both 4GL and C code

stack.

prostack syntax on Unix is:

prostack { -r | -a Pid } ImageFile [CoreFile]

Example against _progres if the PID was 2849:

prostack -a 2849 /psc/113/dlc/bin/_progres

progetstack syntax on Windows is:

progetstack {PID}

Sending a Signal to the Process

On Unix other command line tools can be used to trigger the generation of a stack:

1) Start a putty session and type the following commands:

./proenv

cd lab1/lab1b

pro

P a g e | 17

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

2) Type unix

3) Type control + x to enter a subshell within the Progress session

4) Type ps to get a list of jobs

5) Identify the PID for the _progres session which is found in the first column.

P a g e | 18

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Example:

6) Type prostack -a <PID of the _progres session> /psc/113/dlc/bin/_progres

Example:

prostack -a 8652 /psc/113/dlc/bin/_progres

P a g e | 19

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

7) This will bring up a menu system for asking you to choose the operating system you are running on.

Choose 7 (for Linux which is used for the Exchange labs)

Then enter Y to signify that this choice is correct.

8) For the Linux operating system the GDB debugger will normally be used and this output will be

generated:

P a g e | 20

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

9) Type exit to exit the subshell and return to the Progress client session and press the space bar to

end the procedure.

10) Press the escape key and the M key to enter the menu

ESC + M

11) Hit the down arrow button on your keyboard and select X for Exit

12) Press the N key to indicate that no code should be saved.

13) Issue the following commands:

cat gdb.log

Example excerpt of gdb.log output:

P a g e | 21

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (1c) Operating System Tools

Duration

10 minutes

Goals

In Lab1c you will learn how to monitor the system the Progress database is running on with various operating

system tools

Instructions

1) open four putty sessions to the server

2) arrange the sessions so that each can be seen

3) type the following in each session

./proenv

cd lab1/lab1c

4) In the first of the four putty sessions give this command

sar -q 5 100

6) In the second of the four putty sessions give this command

iostat -dktx 5 100

7) In the third of the four putty sessions give this command

vmstat 5 100

8) In the fourth of the four putty sessions give this command

./busywork.sh

NOTE: It may be beneficial to resize each of the sessions to prevent line wrap for each of the tools.

P a g e | 22

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

9) In the session with sar -q notice the high runq-sz

P a g e | 23

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

10) In the session with the iostat observe the %util

P a g e | 24

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

11) In the session with the vmstat watch the following columns:

 r: The number of processes waiting for run time.

 b: The number of processes in uninterruptible sleep.

 free: the amount of idle memory (kB).

 pi aka bi: Blocks sent to a block device (blocks/s).

 po aka bo: Blocks received from a block device (blocks/s).

 us user time

 sy system time

 wa: Time spent waiting for IO.

Windows perfmon (not part of Workshop--intended for information only)

Windows perfmon can be controlled through its graphic interface or from command line.

perfmon launches the graphic interface where counters can be selected for the OS to monitor.

Physical Disk

Logical Disk

P a g e | 25

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Memory

CPU (processors)

Processes

Can all be monitored. For some of these things it is beneficial to monitor all instances.

Some like Physical and Logical disks it is important to monitor each instance (disk) separately for

proper performance analysis.

Windows logman (not part of Workshop--intended for information only)

The Windows command line tool logman can be used to control the starting and stopping of Perfmon

data collection in Windows.

P a g e | 26

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

UNIX sar, iostat, vmstat: The Unix trilogy of tools.

Sar -u collects data regarding CPU usage

Sar -q collects queue depth for processors

Sar -d collects disk usage information

Iostat (does not exist on all platforms) can also collect data on disk / device usage.

Vmstat collects data on virtual memory usage but also has some useful information on CPU utilization

and blocked process counts.

P a g e | 27

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (1d) db request statement cache

Duration

10 minutes

Goals

 In Lab1d you will learn how to identify performance problems caused by code which might lock

excessive records; read more records than expected; or similar performance degrading behavior.

 Learn how to identify the user and ultimately the procedure and perhaps even the line of code

responsible.

Instructions

1) start two putty sessions with the following commands

./proenv

cd lab1/lab1d

2) In putty session 1 start the database and have it listen on a port

./dbstart.sh

3) Start a promon session against the database on your machine

promon.sh

P a g e | 28

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

4) Enter the following commands in promon

Enter R&D (R&D. Advanced options)

Enter 2 (2. Activity Displays ...)

Enter 1 (1. Summary)

Enter Z to zero the counters

Enter A to turn on automatic iterations

5) In the second putty session start a client session against the database and run the Data Dictionary

with this command:

./clientstart.sh

P a g e | 29

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

6) Select the Schema Menu

7) Hit the down arrow on the keyboard and select Field Editor

P a g e | 30

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

8) Select the Customer table

9) Select Add to add a Field

10) Specify testchar as the field name and hit enter

11) Enter character as the field type and hit enter

P a g e | 31

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

12) At this point the Data Dictionary should hang.

13) Return to the promon session started in step 3

P a g e | 32

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Notice the tremendous activity occurring. Imagine this were a program used within your company where

some new program isn't behaving as expected. Imaging more than one program was recently added and now

you don't know what program is the culprit.

14) Enter control-C to stop the automatic iterations

15) Enter T for Top

Since there were many locks being created by the user let's focus on who is performing the most locks.

Enter 3 (3. Other Displays ...)

Enter 3 (3. Lock Requests By User)

P a g e | 33

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

 Identify the user number with the most locks

a) Enter T for Top

b) Enter 1 (1. Status Displays ...)

c) Enter 18 (18. Client Database-Request Statement Cache ...)

d) Enter 2 (2. Activate For All Users)

e) Enter 1 (1-Single)

f) Select 7 (7. View Database-Request Statement Cache)

Select the user (there will likely be only one unless you have strayed from the script)

The code which is creating the excessive volume of work will be listed.

If you choose to repeat this step for the full stack steps 3 to 7 above can be repeated but a new field name

must be chosen each time.

P a g e | 34

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

16) In the promon session type the following commands:

a) Enter T for Top

b) Enter 1 (1. Status Displays ...)

c) Enter 18 (18. Client Database-Request Statement Cache ...)

d) Enter 2 (2. Activate For All Users)

e) Enter 2 (2-Stack)

f) Select 7 (7. View Database-Request Statement Cache)

17) To end the client session, when the message "can you find my code name?" is on the screen

follow these steps:

a) Press the F4 key on the keyboard

It may take a few seconds for it to backout the temporary work.

b) The Schema Menu should be highlighted.

c) Press the D key to select the Database menu.

d) Press X to exit.

P a g e | 35

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Lab (2) New performance features

Objective

In lab 2 you will learn the benefits to performance using the new -lruskips and lru2skips parameters.

Database administrators will be advised on best practices to review metrics that can identify if lruskips

or lruskips2 should be used.

Part (2a) Demonstration of -lruskips (-lru2skips works the same)

Duration

8 minutes

Goals

Part (a) will provide hands-on demonstration of the –lruskips (and by extension the –lru2skips)

parameter and how it may benefit the performance of your database.

Instructions

1) open three putty sessions and issue the following commands in each

./proenv

cd lab2/lab2a

2) In the first putty session issue this command

./busywork.sh

3) In the second putty session issue this command

promon.sh < ./promoninput

P a g e | 36

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Note the High values for LRU (if you don't see it immediately just wait about 10 seconds).

4) In the third putty session issue this command

promon.sh

Enter R&D (R&D. Advanced options)

Enter 4 (4. Administrative Functions ...)

Enter 4 (4. Adjust Latch Options)

Enter 4 (4. Adjust LRU force skips: 0)

Enter 20 (new value for LRU force skips)

P a g e | 37

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Note the decrease in the LRU latching amounts in the second promon screen..

As LRUSKIPS is increased from the default the contention on LRU will shift to the BUF buffer latches

which have gone up as the LRU latching has gone down.

10) Play with varying values for LRU force skips in the third putty session and observe the behavior of

LRU and BUF.

P a g e | 38

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (2b) Demonstration of Things that can effect LRU

Duration

5 Minutes

Goals

Show negative impact of insufficient value for -omsize.

Instruction

1) open two putty sessions and issue the following commands in each

./proenv

cd lab2/lab2b

2) In the first putty session issue this command

startdb.sh -omsize 10

3) In the second putty session issue this command

multiuser.sh

In the procedure editor type this command but don't run the command yet.

for each _file no-lock: end.

4) In the first putty session issue this command

promon.sh < ./promonauto

NOTE: You may want to resize the screen so that the columns don't wrap around.

5) In the putty session with mpro issue the GO command

F1 or CTRL-X

6) In the putty session with promon notice the large number of locks for the OM latch.

P a g e | 39

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

7) End the client session with the following commands:

Press the ESC + M key to enter the menu

Press F for File

Press X to exit

8) Let's demonstrate reading from a larger table with an omsize value that is too small

 multiuser.sh -p measuring-transmission-time.p

Note the values for OM and LRU in the promon session.

Note the etime duration.

9) Let's start the database back up again in the first putty session issue this command

startdb.sh -omsize 2048

10) In the first putty session issue this command

promon.sh < ./promonauto

NOTE: You may want to resize the screen so that the columns don't wrap around.

11) In the second putty session issue this command

 multiuser.sh -p measuring-transmission-time.p

Observe the promon session.

What changes did you observe for the OM latch?

What changes did you see for the LRU latch?

How different was the etime duration?

12) Let's restart the database and alter the value for the client private buffer pool limit with the

following command:

startdb.sh -B 100000 -Bpmax 25000

13) Let's run the etime code again with this command:

multiuser.sh -p measuring-transmission-time.p -Bp 1000

P a g e | 40

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

While the difference isn't significant for this small test the greater benefit will be for large groups of

users. Performing concurrent operations against a very busy buffer pool.

P a g e | 41

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (2c) Demonstration of -B2

Duration

15 Minutes

Goals

Show performance benefits of the alternate buffer pool; the method to enable areas or specific tables

and indices to use the alternate buffer pool. How to chart benefits from use of the alternate buffer

pool. Learn what things can enable the LRU2 latching for the alternate buffer pool and how to disable

the LRU2 latch if it has accidently been enabled.

Notes

This database has three copies of the customer table with 500k+ records each

The first customer table is in the cust_data area which is type I

The second customer table is in the cust_data2 area with is Type II

The third customer table is in the cust_data3 area which is Type II and enabled for B2 usage

Each of these tables has its own index area in a corresponding area type (type I index area for type I

data area and type II index area for type II data area)

Instruction

1) Start a putty session and issue the following commands

 ./proenv

 cd lab2/lab2c

2) Start the database with a reasonable amount of buffers for the primary buffer pool:

startdb.sh -B 100000

P a g e | 42

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

3) Start a client session and read all the customer records:

multiuser.sh -p customer.p

NOTE the elapsed time to read all the customer records from the Type I area.

Press Enter to clear the message.

4) Restart the database and allocate a reasonable amount of buffers for the primary and alternate

buffer pools:

startdb.sh -B 100000 -B2 100000

5) Start a client session and read all the customer2 table records in a Type II area:

multiuser.sh -p customer2.p

NOTE the elapsed time to read all the customer records from the Type II area.

6) Start Restart the database and allocate a reasonable amount of buffers for the primary and

alternate buffer pools:

startdb.sh -B 100000 -B2 100000

7) Start a client session and read all the customer3 table records in a Type II area which has been

enabled to use the alternate buffer pool:

multiuser.sh -p customer3.p

Note the decrease in elapsed time when using the alternate buffer pool.

8) Let's check to see if the LRU2 Replacement policy was enabled by checking promon:

P a g e | 43

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

promon <dbname>

Enter R&D (R&D. Advanced options)

Enter 2 (2. Activity Displays ...)

Enter 3 (3. Buffer Cache)

If the LRU2 Replacement policy has been enabled then the alternate buffer pool has been exhausted

which will negatively affect performance.

Consider using proutil <dbname> -C increaseto -B2 <larger B2 size>

P a g e | 44

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

This will be demonstrated later in the workshop.

NOTE: In the past probkup would overwhelm the alternate buffer pool due to a bug.

This has been fixed in 10.2B05 and 11.0.

P a g e | 45

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Lab 3 Demonstration of -Nmsg, -prefetchFactor, -prefetchDelay, -

prefetchNumRecs.

Objective

Demonstrate methods to improve communication time between remote clients and servers when the

application code uses prefetch, no-lock, or scrolling queries.

Considering which options are better for individual client connections and multiple concurrent client

connections.

Observing the trade-offs (more / less packets versus delay in time) using the new network parameters.

Duration

15 Minutes

Instruction

1) Open two putty sessions and issue the following commands in each

./proenv

cd lab3

2) In the first putty session issue this command to start the database listening on port 7077 with a

small buffer pool of 10000:

startdb.sh -S 7077 -B 10000

3) In the first putty session start a promon session against the database and issue the follow

commands in promon:

promon.sh

Enter R&D (R&D. Advanced options)

Enter 2 (2. Activity Displays ...)

Enter 2 (2. Servers)

Enter Z to zero the counters

P a g e | 46

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

4) In the second putty session run this command to connect to the database via TCP and query the

customer table and display the elapsed time:

multiuser.sh -S 7077 -H localhost -p measuring-transmission-time.p

This will serve as a baseline for comparison versus the new parameters added later in this lab.

5) A message will be displayed in the client session:

" Just finished populating the database buffer pool."

At this point return to the putty session that contains promon

Enter Z to zero the counters

6) Press the Enter key in the Progress client session to run the code to collect the elapsed time.

Note the etime value now.

7) Hit U in the promon session to collect a sample

Note the messages sent and received

8) Hit X to exit the promon session.

9) Restart the database using the additional parameter -Mm 8192

startdb.sh -S 7077 -B 10000 -Mm 8192

10) In the first putty session start a promon session against the database and issue the follow

commands in promon:

promon.sh

Enter R&D (R&D. Advanced options)

Enter 2 (2. Activity Displays ...)

Enter 2 (2. Servers)

Enter Z to zero the counters

P a g e | 47

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

11) Run the etime code with the additional parameter -Mm

multiuser.sh -S 7077 -p measuring-transmission-time.p -Mm 8192

12) A message will be displayed in the client session:

" Just finished populating the database buffer pool."

At this point return to the putty session that contains promon

Enter Z to zero the counters

13) Press the Enter key in the Progress client session to run the code to collect the elapsed time.

Note the etime value now.

14) Hit U in the promon session to collect a sample

Note the messages sent and received

15) Hit X to exit the promon session.

16) Restart the database adding the additional parameter -prefetchDelay

startdb.sh -S 7077 -B 10000 -prefetchDelay -Mm 8192

17) In the first putty session start a promon session against the database and issue the follow

commands in promon:

promon.sh

Enter R&D (R&D. Advanced options)

Enter 2 (2. Activity Displays ...)

Enter 2 (2. Servers)

Enter Z to zero the counters

18) Run the etime code with the additional parameter -Mm

multiuser.sh -S 7077 -p measuring-transmission-time.p -Mm 8192

19) A message will be displayed in the client session:

" Just finished populating the database buffer pool."

At this point return to the putty session that contains promon

Enter Z to zero the counters

P a g e | 48

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

20) Press the Enter key in the Progress client session to run the code to collect the elapsed time.

Note the etime value now.

21) Hit U in the promon session to collect a sample

Note the messages sent and received

22) Hit X to exit the promon session.

Which went down or up? Is that what you expected.

23) Restart the database again and add -prefetchFactor

startdb.sh -S 7077 -B 10000 -prefetchDelay -prefetchFactor 90 -Mm 8192

24) Run the etime code with the additional parameter -Mm

multiuser.sh -S 7077 -p measuring-transmission-time.p -Mm 8192

25) A message will be displayed in the client session:

" Just finished populating the database buffer pool."

At this point return to the putty session that contains promon

Enter Z to zero the counters

26) Press the Enter key in the Progress client session to run the code to collect the elapsed time.

Note the etime value now.

27) Hit U in the promon session to collect a sample

Note the messages sent and received

28) Hit X to exit the promon session.

Which went down or up? Is that what you expected.

P a g e | 49

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Lab 4 Use of the proutil increaseto feature.

Objective:

 Lab 4 will simulate common problems related to the database startup parameters (-B, -B2, -L,

-aibufs, -bibufs, and -Mxs).

 Some caveats to the proutil increaseto function will be shown.

Part (4a) Demonstration of increaseto -L

Duration

5 Minutes

Instruction

1) Start a putty session

2) Enter the following commands:

./proenv

cd lab4/lab4a

3) Start the database with a small value for -L

startdb.sh -L 500

4) Start a client session and run a piece of code to fill the -L:

multiuser.sh -p lock-lots-of-records.p

The session will have died because the Lock Table has been exhausted.

Lock table overflow, increase -L on server (915)

5) Issue these commands within the client session:

Press the F4 key within the client session.

Enter the following in the procedure editor:

 quit

Type the following control key sequence:

CTRL + X

6) Issue the following command:

proutil /psc/113/wrk/Exchange/db/sports2000 -C increaseto -L 1000000

P a g e | 50

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

This will be the screen results:

7) Start a client session and run the same piece of code:

multiuser.sh -p lock-lots-of-records.p

Note the client did not die because the lock table was not exhausted.

P a g e | 51

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (4b) Demonstration of increaseto -B

Duration

8 Minutes

Instruction

1) Open two putty sessions and issue the following commands:

./proenv

cd lab4/lab4b

2) In the first putty session issue the following commands to start the database with a small buffer

pool:

startdb.sh -B 1000 -L 1000000

3) Run promon against the database:

promon.sh <./promonauto

NOTE: You may want to resize the putty session to prevent the column wrapping.

4) In the second putty session run this command:

./twosessions.sh

P a g e | 52

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

5) In the putty session running promon:

Notice the high contention

.

6) In the putty session where the mpro was run exit the mpro session hit Enter to return to the proenv

command prompt.

7) In the putty session running promon let's end the promon session even if it isn't finished with its

iterations by issuing this control sequence:

CTRL + C

8) In the first putty session issue the following command:

proutil /psc/113/wrk/Exchange/db/sports2000 -C increaseto -B 100000

9) In the first putty session start promon against the database

promon.sh <./promonauto

P a g e | 53

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

10) In the second putty session run this command:

./twosessions.sh

 11) In the putty session where promon is running notice the reduced contention

.

P a g e | 54

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Caveat to increaseto due to current logged in users.

Duration

5 Minutes

Instruction

1) Open two putty sessions and issue the following commands

./proenv

cd lab4/lab4c

2) In the first putty session start the database with this command to intentionally give very few

database buffers

startdb.sh

3) Start promon against the database

promon.sh

4) In the second putty session issue the following commands:

proutil /psc/113/wrk/Exchange/db/sports2000 -C increase2 -B 1000

Note the message:

Users already connect may not be able to immediately connect to the newly allocated shared memory.

P a g e | 55

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

If not, the proutil function will display those users that must be disconnected and reconnected:

5) In the putty session running promon Enter X to exit promon.

6) In the putty session which is waiting to increase the -B enter Y to recheck.

P a g e | 56

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Part (4c) Demonstration of increaseto -B2 (Disabling LRU2 Policy)

Duration

5 Minutes

Instruction

1) Open two putty sessions and issue the following commands

./proenv

cd lab4/lab4c

2) Issue the following command in the first putty session

demonstrate-lru2-enabled.sh

Hit the return key once more so the program will return to the prompt when it is done.

3) In the second putty session issue this the following commands:

gatherlru.sh

Notice the LRU2 Replacement Policy is Enabled

P a g e | 57

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

4) From the command prompt in the second putty session issue the command to increase the -B2

proutil /psc/113/wrk/Exchange/db/sports2000 -C increaseto -B2 100000

5) In the first putty session run this command again:

gatherlru.sh

Notice the LRU2 Replacement Policy is now Disabled

